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PERSPECTIVE

SCIENTIFIC IBTEGRITY

What does research reproducibility mean?

Steven N. Goodman,* Daniele Fanelli, John P. A. loannidis

The language and conceptual framework of “research reproducibility” are nonstandard
and unsettled across the sciences. In this Perspective, we review an array of explicit and
implicit definitions of reproducibility and related terminology, and discuss how to avoid
potential misunderstandings when these terms are used as a surrogate for “truth.”

Concern about the reproducibility of scientif-
ic research has been steadily rising recently
with reports that the results of experiments
in numerous domains of science could not
be replicated (1, 2). Whereas problems in bio-
medical research have garnered most of the
attention, concerns have touched almost ev-
ery field in the biological and social sciences
and beyond (3) (Fig. 1). As the movement to
examine and enhance the reliability of research
expands, it is important to note that some of
its basic terms—reproducibility, replicability,
reliability, robustness, and generalizability—
are not standardized. This diverse nomencla-
ture has led to confusion, both conceptual
and operational, about what kind of confir-
mation is needed to trust a given scientific re-
sult. Here, we dissect this vocabulary, explore
the reasons for the confusion, and offer a frame-
work to improve both communication and
understanding.

DEFINING THE TERMS

Although the importance of multiple studies
corroborating a given result is acknowledged
in virtually all of the sciences (Fig. 1), the
modern use of “reproducible research” was
originally applied not to corroboration, but
to transparency, with application in the com-
putational sciences. Computer scientist Jon
Claerbout coined the term and associated it
with a software platform and set of proce-
dures that permit the reader of a paper to see
the entire processing trail from the raw data
and code to figures and tables (4). This con-
cept has been carried forward into many data-
intensive domains, including epidemiology (5),
computational biology (6), economics (7), and
clinical trials (8). According to a U.S. National
Science Foundation (NSF) subcommittee on
replicability in science (9), “reproducibility re-
fers to the ability of a researcher to duplicate
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the results of a prior study using the same
materials as were used by the original inves-
tigator. That is, a second researcher might use
the same raw data to build the same analysis
files and implement the same statistical anal-
ysis in an attempt to yield the same results.. ..
Reproducibility is a minimum necessary
condition for a finding to be believable and
informative.”

Documenting this kind of reproducibility
thus requires, at minimum, the sharing of an-
alytical data sets (original raw or processed
data), relevant metadata, analytical code,
and related software. Reproducibility defined
in this way mainly addresses issues of trust
that data and analyses are as represented.
The definition does not specify to what extent
deviations are acceptable. Such reproducibility
does not add new evidential weight, although
greater subjective weight is often accorded to
evidence that is more highly trusted. New ev-
idence is provided by new experimentation,
defined in the NSF report as “replicability,”
which refers to “the ability of a researcher to
duplicate the results of a prior study if the
same procedures are followed but new data
are collected.”

Although the preceding conceptual dis-
tinctions might seem clear, the definitions
do not provide clear operational criteria for
what constitutes successful replication or re-
production. Furthermore, the terminology is
not universally used, and sometimes the mean-
ings above are reversed. Consider the language
of Francis Collins, director of the U.S. National
Institutes of Health (NIH), in his commentary
on plans to enhance research reproducibility (10):
“... a complex array of other factors
seems to have contributed to the lack
of reproducibility. Factors include poor
training of researchers in experimental
design, increased emphasis on making
provocative statements rather than pre-
senting technical details, and publications
that do not report basic elements of ex-
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perimental design. Some irreproducible
reports are probably the result of coin-
cidental findings that happen to reach
statistical significance, coupled with
publication bias. Another pitfall is over-
interpretation of creative ‘hypothesis-
generating’ experiments, which are
designed to uncover new avenues of in-
quiry rather than to provide definitive
proof for any single question. Still, there
remains a troubling frequency of pub-
lished reports that claim a significant re-
sult, but fail to be reproducible.”

This short passage covers a wide range of
issues subsumed under the rubric of reprodu-
cibility: design, reporting, analysis, interpretation,
and corroborating studies (that is, replication,
as previously defined). If one looks at the termi-
nology being used across the scientific literature,
one finds similar variation and intermingling of
concepts. For example, the largest-scale attempt
to replicate experiments in psychology was
published with the title “Estimating the repro-
ducibility of psychological science,” (2) clearly
allying the term “reproducibility” with the
conduct of new studies.

One notable absence from this diverse lex-
icon is the word “truth.” The fundamental
concern of Collins and others is, in fact, not
reproducibility per se, but whether scientific
claims based on scientific results are true. Be-
low, we discuss how treating reproducibility
as an end in itself—rather than as an im-
perfect surrogate for scientific truth—is partly
responsible for the current terminological and
operational morass, and suggest how we can
benefit by refocusing on cumulative evidence
and truth.

& MEW LEXICON FOR RESEARCH
REPRODUCIBILITY

We start the process of clarification by pro-
posing a new terminology to distinguish between
the various interpretations of reproducibility.
Rather than offer new technical meanings for
words whose common language interpreta-
tions are nearly identical (such as reproducibility,
replicability, and repeatability), we propose to ally
the word reproducibility—currently the most
widely used single term in this domain—with
descriptors for the underlying construct. This
yields three terms: methods reproducibility,
results reproducibility, and inferential repro-
ducibility. Although we apply these terms mainly
to the biomedical field, they have utility across
many domains of science, each of which has
different conventions and cultures about how
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Fig. 1. Reports rising. Number of publications recorded in Scopus that have, in the title or abstract,
at least one of the following expressions: research reproducibility, reproducibility of research, repro-
ducibility of results, results reproducibility, reproducibility of study, study reproducibility, reproducible
research, reproducible finding, or reproducible result. Papers are classified by discipline on the basis
of the journal, following an adaptation and expansion of Thomson Reuters’ Essential Science Indica-
tors classification system. Journals not included in the latter database were hand-classified on the
basis of their name. The subplot reports the percentage over the total number of records for each
discipline, in the last 2 years of the series. Disciplines legend: MA, mathematics; CS, computer
sciences; EN, engineering; SP, space science; PH, physics; CH, chemistry; BB, biology and biochemistry;
MB, molecular biology; M, microbiology; PT, pharmacology and toxicology; CM, clinical medicine; NB,
neurobiology and behavior; PA, plant and animal sciences; EE, environment and ecology; AG, agri-
cultural sciences; EB, economics and business; PP, psychology and psychiatry; SO, social sciences,
general; AH, arts and humanities; MU, multidisciplinary. The time series was truncated at 2014.

to handle the role of chance, the level of certain-  the same experimental methods. Inferential

ty required for making published claims, and
the adopted criteria for “proof” (Table 1) (11).

Methods reproducibility is meant to capture
the original meaning of reproducibility, that
is, the ability to implement, as exactly as pos-
sible, the experimental and computational
procedures, with the same data and tools, to
obtain the same results. Results reproducibil-
ity refers to what was previously described as
“replication,” that is, the production of corrobo-
rating results in a new study, having followed

reproducibility, not often recognized as a sep-
arate concept, is the making of knowledge
claims of similar strength from a study replica-
tion or reanalysis. This is not identical to results
reproducibility, because not all investigators
will draw the same conclusions from the same
results, or they might make different analytical
choices that lead to different inferences from
the same data. Here, we explore the definitions
and operational complexities of each of these
concepts.

www Sxience Trarsiationaiedicines.org

Methods reproducibility

Methods reproducibility refers to the provi-
sion of enough detail about study procedures
and data so the same procedures could, in
theory or in actuality, be exactly repeated.
Operationally, this can mean different things
in different sciences. In the biomedical sciences,
this means, at minimum, a detailed study pro-
tocol, a description of measurement proce-
dures, the data gathered, the data used for
analysis with descriptive metadata, the analysis
software and code, and the final analytical
results. In laboratory science, how key reagents
and biological materials were created or ob-
tained can be critical. In theory, these require-
ments are clear, but in practice, the level of
procedural detail needed to describe a study
as “methodologically reproducible” does not
have consensus. For example, the detection of
batch effects, which have been responsible for a
number of high-visibility claims and retrac-
tions, can require information on exactly which
samples were tested on which machine in what
order and on what day, together with calibra-
tion data. This level of detail is typically not
provided in publications and is not always re-
tained by the investigator.

In the clinical sciences, the definition of
which data need to be examined to ensure re-
producibility can be contentious. The relevant
data could be anywhere along the contimmum
from the initial raw measurement (such as a
pathology slide or image), to the interpreta-
tion of those data (the pathologic diagnosis),
to the coded data in the computer analytic
file. Many judgments and choices are made
along this path and in the processes of data
cleaning and transformation that can be crit-
ical in determining analytical results. Last,
even if there is consensus on the appropriate
analytical data set, methodologic reproduci-
bility requires an understanding of which
and how many analyses were performed
and how the particular analyses reported in
a published paper were chosen. So, whether
a particular study is to be considered method-
ologically reproducible is contingent on whether
there is general agreement about the level of
detail needed in the description of the mea-
surement process, the degree of processing
of the raw data, and the completeness of the
analytic reporting.

Results reproducibility

Results reproducibility (previously described
as replicability) refers to obtaining the same
results from the conduct of an independent
study whose procedures are as closely matched
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Table 1. Examples of differences that
affect the approach to reproducibility in
distinct scientific domains.

Degree of determinism
Signal to measurement-error ratio
Complexity of designs and measurement tools

Closeness of fit between hypothesis and exper-
imental design or data

Statistical or analytic methods to test hypotheses
Typical heterogeneity of experimental results

Culture of replication, transparency, and cumu-
lating knowledge

Statistical criteria for truth claims

Rurposes to which findings will be put and
consequences of false conclusions

to the original experiment as possible. As with
methods reproducibility, this might be clear in
principle but is operationally elusive. The
problem arises in settings where there is sub-
stantial random error in any result, making
unclear the criteria for considering results to
be “the same.” The intuition and logic of results
reproducibility are derived from systems that
are deterministic or for which the signal-to-
error ratio is exceedingly high. But, when the
same intuition and logic are applied to studies
with substantive stochastic components, the
paradigm of accumulating evidence might be
more appropriate than any binary criteria for
successful or unsuccessful replication.

In a deterministic system (for example, com-
putational research), the outcome is determined
by the initial conditions. Methods reproduci-
bility is often demonstrated through results
reproducibility because the two are linked
by determinacy—the signal-to-noise ratio is
effectively infinite. A single failure to repro-
duce the original results with identical inputs
casts doubt on the methodology and on any
predictions (12).

Closely related is a proof-of-principle study,
which demonstrates a new phenomenon not
previously observed; for example, delivery of
the first normal, live-born infant derived from
in vitro fertilization or a first case of human
limb regeneration would be sufficient to show
that such phenomena are possible. That said, a
first demonstration will not be accepted with-
out intensive, independent scrutiny of the
methods employed and the outcomes claimed,
in order to rule out the possibility of mis-
conduct, selective reporting, or procedural
compromise. Failure to replicate the phenome-

non under circumstances that preclude ancil-
lary causes (for example, mistaken diagnosis,
faulty procedures, measurement error, biased
design, or fraud) constitutes effective disproof
of the original claim. This type of scrutiny
helped debunk claims of cold fusion (13) and
pluripotent stem cell creation (14).

The bright-line logic of deterministic and
proof-of-principle studies is superficially mi-
micked through statistical significance testing;
findings that are statistically significant are of-
ten regarded either as literally true or, at least,
as justifying a knowledge claim, and those
that aren’t are regarded as either confirming
the null hypothesis or inconclusive. However,
it is inappropriate to combine null hypothesis—
significance testing with intuition from fields
of science with determinacy or very high signal-
to-noise ratios. Statistical significance by itself
tells very little about whether one study has
“replicated” the results of another. For exam-
ple, two studies that show identical 10%
survival differences between the treatment
and control arms would have very different
degrees of statistical significance if their sam-
ple sizes were substantially different. If one
was highly significant and the other far from
significance, the two studies might be re-
ported individually as supporting opposite
conclusions, in spite of the fact that they are
mutually corroborative.

An interpretive error complementary to
the one described above involves the assump-
tion that multiple studies that fail to demonstrate
statistical significance necessarily confirm the
absence of an effect. This fallacy was demon-
strated, for example, in a well-known early
meta-analysis of the effect of tamoxifen on
breast cancer survival (15). (Meta-analysis is
the mathematical pooling of results of
multiple independent studies that investigate
the same research question.) In this pooled
analysis, 25 of 26 individual studies of tamox-
ifen’s effect were not statistically significant.
Naively, these nonsignificant findings could
be described as having been replicated 25
times. Yet, when properly pooled, they cumu-
latively added up to a definitive rejection of
the null hypothesis with a highly statistically
significant 20% reduction in mortality. So the
proper approach to interpreting the evidential
meaning of independent studies is not to
assess whether or not statistical significance
has been observed in each, but rather to assess
their cumulative evidential weight.

The above example involved randomized
experiments without major bias. If major bi-
ases are at play, having multiple statistically

www Sxience Trarsiationaiedicines.org

significant studies and even a statistically sig-
nificant summary result for a meta-analysis
does not guarantee that a genuine effect exists.
For example, many studies on single nutrients
and even their meta-analyses show significant
associations with cancer or death risk, but most
reflect confounding and reporting biases (16).
What matters in such scientific fields is not
replication defined by the presence or absence
of statistical significance, but the evaluation of the
cumulative evidence and assessment of whether
it is susceptible to major biases, due to either the
study design or the self-selection of subjects
in ways that are unknown or not measurable.

It is easier to statistically define nonrepli-
cation than replication, through statistical
tests of heterogeneity, which can evaluate
whether the difference between two or more
experimental results might be due to the play
of chance. Two or more studies are judged to be
statistically heterogeneous when the between-
study variance in reported effects is substan-
tially greater than what is expected from
sampling error. Such tests, however, are greatly
underpowered and therefore unreliable when
comparing several studies, particularly when
they are small or imprecise (17). Conversely,
when there are many large studies, tests for
heterogeneity might demonstrate statistical
heterogeneity (and, therefore, lack of results
reproducibility) even if the effect sizes of differ-
ent studies are close (17) and regarded as sci-
entifically equivalent. Therefore, a preferred
way to assess the evidential meaning of two
or more results with substantive stochastic var-
iability is to evaluate the cumulative evidence
they provide vis-a-vis a hypothesis of interest
and not whether one contradicts or discre-
dits the other through the lens of statistical
significance.

Whether experiments can be pooled to
provide cumulative evidence depends further
on which features of a study or results are
considered scientifically equivalent enough to
pool. For example, in a recent replication effort
of the anti-Leishmania activity of tested pep-
tides, it was difficult to tell whether replication
had been achieved or not; the peptides were
found to have anti-Leishmania activity, but
at concentrations 10 to 50 higher than in the
original experiments and close to the toxicity
range of eukaryotic human cells (18). Rejection
of the null hypothesis in the two sets of
experiments was insufficient to garner consensus
about results reproducibility when consensus
was missing about the operational scientific
question, that is, whether the peptides had
activity at low (and clinically relevant) con-
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centrations or at any concentration. These
experiments could be regarded as conflicting
on the first question and mutually supportive
on the second, so the question of results repro-
ducibility is always dependent on the specific-
ity of the underlying scientific question.

In the absence of a consensus on what con-
stitutes successful results reproduction, in-
vestigators employ a range of operational
definitions, as occurred in the case of the eval-
uation of the (results) reproducibility of 100
psychology studies conducted by the Open
Science Collaboration (2). They acknowledged
the lack of an accepted definition and so ex-
amined the studies from a variety of perspec-
tives: significance levels, effect sizes, the number
of studies whose effect size was within the con-
fidence interval of another selected study,
whether the combined estimate of the original
and replication studies was statistically significant
and finally, a “subjective assessment” of reprodu-
cibility. The lack of a single accepted definition
opened the door to controversy about their
methodological approach and conclusions (19).

Robustness and generalizability

We briefly introduce these terms because they
are sometimes used in lieu of the term repro-
ducibility. Robustness refers to the stability of
experimental conclusions to variations in either
baseline assumptions or experimental proce-
dures. It is somewhat related to the concept
of generalizability (also known as transport-
ability), which refers to the persistence of an
effect in settings different from and outside of
an experimental framework. The issue of gen-
eralizability arises in clinical trials and other
types of studies in which the context of how
an intervention is delivered and the types of
subjects tested are highly relevant. When a
universal property of nature or biology is
being explored, generalizability is often as-
sumed, and the concept of robustness of a
finding to minor variations in experimental
procedures is more frequently invoked. Whether
a study design is similar enough to the original
to be considered a replication, a “robustness
test,” or some of many variations of pure repli-
cation that have been identified, particularly in
the social sciences (for example, conceptual re-
plication, pseudoreplication), is an unsettled
question (12).

Inferential reproducibility

This dimension of reproducibility, while un-
derrecognized, might be the most important
one. It refers to the drawing of qualitatively
similar condusions from either an indepen-

dent replication of a study or a reanalysis of
the original study. Inferential reproducibility
is not identical to results reproducibility or
to methods reproducibility, because scientists
might draw the same conclusions from differ-
ent sets of studies and data or could draw dif-
ferent conclusions from the same original
data, sometimes even if they agree on the an-
alytical results. The aforementioned debate
about the interpretation of the psychology
reproducibility results could be seen as an
example of this (19). There are many contrib-
utors to these differences, including different
assessments of the prior probability of the hy-
potheses being explored—which can only be
examined through a Bayesian lens—and dif-
ferent choices about how to analyze and re-
port data, which we will discuss under the
general rubric of “multiplicity.”

Bayesian perspectives. What scientists and
science users are really concerned about when
they debate research reproducibility is the
truth of research claims. Research reproduci-
bility and other related concepts can be re-
garded as ways to operationalize truth. To
express this informally, if a finding can be re-
liably repeated, it is likely to be true, and if it
cannot be, its truth is in question (20). Un-
fortunately, the standard frequentist approach
to statistics does not allow the assigning of a
probability of truth to a hypothesis or claim
(21). However, the philosophy underlying
Bayesian statistics does: The probability that
a claim is true after an experiment is a
function of the strength of the new experimen-
tal evidence combined with how likely it was
to be true before the experiment. Viewed
through this lens, the aim of repeated experi-
mentation is to increase the amount of evi-
dence, measured on a continuous scale, either
for or against the original cdlaim.

How much evidence needs to be gathered
for effective proof depends on the prior prob-
ability of the original hypothesis, which itself
depends on prior evidence. If a hypothesis is
highly unlikely a priori, such as the presence of
extrasensory perception or the therapeutic ef-
fect of homeopathy, a large amount of high-
quality evidence would have to be gathered to
outweigh the very strong prior reasons to
view such claims skeptically (22, 23). Con-
versely, for a hypothesis based on a plausible,
coherent, and robust body of prior work,
such as the research that preceded the devel-
opment of imatinib for leukemia (24), a claim
is more likely to be true both before and after
an experiment that supports it. Under the
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Bayesian paradigm, every study contributes
evidence that adds to the prior evidence, rep-
resented by the a priori probability of truth of
a given claim. Reproducibility plays no formal
role except that repeated experiments with sim-
ilar findings will generate strong cumulative
evidence, which can confirm or refute an ini-
tial finding.

A hybrid Bayesian-frequentist index that
captures the traditional notion of results re-
producibility is predictive power: the probabil-
ity that, given a result in one experiment, the
next experiment of specified design will be sta-
tistically significant. This probability has been
dubbed the replication (25) or reproducibility
probability (26). After a significant result, this
probability is typically far lower than most
scientists suspect, due to the random variation
of the P value. This phenomenon shows that
the failure to observe a significant result in a
second experiment of similar design is to be
expected and cannot be used as a criterion to
undermine the credibility of the first experi-
ment (25-28).

Multiplicity. Multiplicity, combined with
incomplete reporting, might be the single
largest contributor to the phenomenon of
nonreproducibility, or falsity, of published
claims. Multiplicity can arise in many ways,
including testing many hypotheses in one ex-
periment, testing one hypothesis many times
or in multiple ways in one or more studies,
and other maneuvers that virtually guarantee
a chance observation that will appear to
strongly support some hypotheses. A diverse
vocabulary has developed in various fields for
the biases or practices that can mislead be-
cause of multiplicity (Table 2). These range
from the conduct of multiple experiments
(and reporting only “good” ones) to the use
of multiple endpoints, multiple predictors,
and, perhaps most invisibly, the fitting of
many mathematical or statistical models.
Coupled with incomplete or selective reporting,
these practices are a formula for generating
findings unlikely to be supported by further
experimentation. However, the adverse effects
of multiplicity can be greatly ameliorated
through complete reporting of analytical pro-
cedures and choices (for example, reporting
the total number of associations tested or
models considered).

These practices are likely to thrive when
there is low consensus on the correct meth-
odology and what is considered sufficiently
complete reporting. Many scientific fields have
seen an increasing burden of multiplicity,
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Table 2. Terminology to describe
practices that introduce or hide
multiplicity.

Multiple comparisons (many statisticians)
File-drawer problem (29)
Pseudaoreplication (32)

Significance questing (33)

Data mining, dredging, torturing (34)

Hypothesizing after the results are known
(HARKing) (30)

Data snooping (35)

Selective outcome reporting (36)
Silent multiplicity 37)
Specification searching (38)

P-hacking (37)

because they have expanded their capacity
to measure more variables and to fit in-
creasingly complex models. Scientific fields
that routinely work with multiple hypotheses
without correcting for or reporting the occur-
rence of multiplicity run a higher risk of non-
reproducibility of results or inferences.

A variety of old and new practices that are
described as specific forms of bias actually re-
sult from multiplicity. The dassic file-drawer
publication bias problem (wherein non-
significant or “uninteresting” results are not
published) (29) results in bias under the as-
sumption that multiple studies are being
produced independently but a biased sample
is published. The acronym “HARKing”—
hypothesizing after the results are known—
is used in psychology literature to indicate
the phenomenon of constructing hypotheses
after the data are analyzed, suggesting that
only one hypothesis was tested while many
were contemplated (30). The practice of
P-hacking, a term recently coined in psychology
literature and applied to a long-recognized
phenomenon in modeling, refers to applying
multiple statistical analyses and subanalyses
until hitting upon and reporting a statistically
significant result while not completely report-
ing how it was obtained (31).

Ultimately, inferential reproducibility might
be an unattainable ideal, and in some situations
not even a desirable one, because differences
between scientists and their interpretations
of a single or multiple studies are the means
through which weaknesses or gaps in the evi-
dence base are identified and science pro-
gresses. What is clear, however, is that none

of these types of reproducibility can be assessed
without complete reporting of all relevant as-
pects of scientific design, conduct, measure-
ments, data, and analysis. Such transparency
will allow scientists to evaluate the weight of
evidence provided by any given study more
quickly and reliably and design a higher pro-
portion of future studies to address actual
knowledge gaps or to effectively strengthen
cumulative evidence, rather than explore blind
alleys suggested by research inadequately con-
ducted or reported.

CONCLUSIONS

The lexicon of reproducibility to date has been
multifarious and ill-defined. The causes of and
remedies for what is called poor reproducibil-
ity, in any scientific field, require a clear spec-
ification of the kind of reproducibility being
discussed (methods, results, or inferences),
a proper understanding of how it affects knowl-
edge dlaims, scientific investigation of its causes,
and an improved understanding of the limita-
tions of statistical significance as a criterion
for claims. Many aspects of the new interest in
research reproducibility have been salutary,
but we need to move toward a better under-
standing of the relationship between reproduc-
ibility, cumulative evidence, and the truth of
scientific claims.
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